Z Agents Framework
Last updated
Last updated
Zara is built on a modular, extensible AI framework that enables autonomous agents to perform complex tasks while maintaining personality and context awareness. The framework provides a foundation for deploying purpose-built AI agents in web3.
class MemoryManager:
"""Manages agent memory across different storage types."""
def __init__(self):
self.short_term = RedisCache()
self.long_term = QdrantVectorStore()
self.state = PostgresStateStore()
async def store_context(self, context: Context):
"""Store context in appropriate memory store."""
if context.is_temporary:
await self.short_term.store(context)
else:
await self.long_term.store(context)
async def retrieve_context(self, query: str) -> List[Context]:
"""Retrieve relevant context using semantic search."""
short_term = await self.short_term.search(query)
long_term = await self.long_term.search(query)
return self.merge_contexts(short_term, long_term)
class TaskOrchestrator:
"""Manages task execution and agent coordination."""
async def schedule_task(self, task: Task):
"""Schedule a task for execution."""
priority = self.calculate_priority(task)
agent = await self.select_agent(task)
return await self.queue.put({
"task_id": task.id,
"agent_id": agent.id,
"priority": priority,
"payload": task.payload
})
async def coordinate_agents(self, workflow: Workflow):
"""Coordinate multiple agents for complex tasks."""
dag = self.build_task_dag(workflow)
return await self.execute_dag(dag)
class PluginManager:
"""Manages plugin lifecycle and integration."""
async def load_plugin(self, plugin_config: Dict):
"""Load and initialize a plugin."""
plugin = await self.registry.get_plugin(plugin_config["name"])
instance = plugin(plugin_config)
await instance.initialize()
return instance
async def execute_plugin_task(self, plugin: Plugin, task: Task):
"""Execute a task using a plugin."""
context = await self.get_context(task)
result = await plugin.execute(task, context)
await self.store_result(result)
# agent_config.yaml
name: "Trading Analysis Agent"
version: "1.0.0"
description: "Analyzes trading opportunities and provides insights"
personality:
base: "analytical"
traits:
- "precise"
- "data-driven"
- "risk-aware"
capabilities:
- name: "technical_analysis"
config:
indicators: ["RSI", "MACD", "BB"]
- name: "sentiment_analysis"
config:
sources: ["twitter", "telegram", "discord"]
runtime:
type: "persistent"
scaling:
min_instances: 1
max_instances: 5
target_cpu_utilization: 75
plugins:
- name: "dex_screener"
version: "1.2.0"
- name: "twitter_api"
version: "2.0.0"
memory:
short_term:
type: "redis"
ttl: 3600
long_term:
type: "qdrant"
collection: "trading_memory"
class AgentRuntime:
"""Manages agent lifecycle and execution."""
async def initialize_agent(self, config: AgentConfig):
"""Initialize agent with configuration."""
self.personality = await self.load_personality(config.personality)
self.capabilities = await self.load_capabilities(config.capabilities)
self.plugins = await self.load_plugins(config.plugins)
return Agent(
personality=self.personality,
capabilities=self.capabilities,
plugins=self.plugins
)
async def execute_task(self, agent: Agent, task: Task):
"""Execute task with agent."""
context = await self.get_context(task)
response = await agent.process(task, context)
await self.store_response(response)
class BasePlugin:
"""Base class for plugins."""
async def initialize(self):
"""Initialize plugin resources."""
pass
async def execute(self, task: Task, context: Context) -> Result:
"""Execute plugin-specific task."""
raise NotImplementedError
async def cleanup(self):
"""Cleanup plugin resources."""
pass
class TradingPlugin(BasePlugin):
"""Plugin for trading analysis."""
async def execute(self, task: Task, context: Context) -> Result:
"""Execute trading analysis task."""
data = await self.fetch_market_data(task.symbol)
analysis = await self.analyze_data(data)
return self.format_result(analysis)
graph TD
A[Dev.Fun Platform] --> B[Agent Registry]
B --> C[Kubernetes Cluster]
C --> D[Agent Pods]
C --> E[Service Mesh]
C --> F[Monitoring]
D --> G[Agent Container]
G --> H[Agent Runtime]
H --> I[Plugins]
E --> J[Service Discovery]
E --> K[Load Balancing]
F --> L[Prometheus]
F --> M[Grafana]
graph TD
A[Memory Manager] --> B[Short-term Memory]
A --> C[Long-term Memory]
B --> D[Redis Cache]
C --> E[Qdrant Vector DB]
D --> F[Recent Interactions]
D --> G[Temporary Context]
E --> H[Historical Data]
E --> I[Learned Patterns]
subgraph "Context Types"
J[User Context]
K[Market Context]
L[Social Context]
end
F --> J
F --> K
F --> L
# kubernetes/agent-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: trading-agent
spec:
replicas: 3
selector:
matchLabels:
app: trading-agent
template:
metadata:
labels:
app: trading-agent
spec:
containers:
- name: agent
image: zara/trading-agent:latest
resources:
requests:
cpu: "500m"
memory: "1Gi"
limits:
cpu: "2"
memory: "4Gi"
class PerformanceMonitor:
"""Monitor agent performance metrics."""
async def collect_metrics(self):
"""Collect performance metrics."""
metrics = {
"response_time": self.calculate_response_time(),
"memory_usage": self.get_memory_usage(),
"task_throughput": self.get_task_throughput(),
"error_rate": self.get_error_rate()
}
await self.store_metrics(metrics)
Implement custom plugins
Enhance memory management
Add new agent capabilities
Scale deployment
Monitor performance